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Analysis of Stress in PD Front End Solenoids 
I. Terechkine 

 
I. Introduction. 

 
There are four different types of superconducting solenoids used for beam focusing in 

the Frond End of the Proton Driver. Table 1 gives an idea about requirements for certain 
parameters of the solenoids (some question marks in the table reflect lack of 
understanding of the situation with the available space at the moment).  

          Table 1 
 DTL MEBT SSR DSR 
Parameter     

Bore diameter 25 mm 25 mm 30 mm 30 mm 
Bore type warm warm cold cold 

Field Integral FI = ∫B2dl (T2·cm) 218 264 313 478 
Recommended Bm (T) 5 5.5 6 5.4 

Leff (cm) @ Bm 9.78 9.78 9.78 17.66 
Available insertion gap (cm) 25 (18 ?) (18 ?) 39 (18 ?) 30 (32 ?) 

 
The central magnetic field is in the range (5 – 6) T when longitudinal field profile is 

quasi-rectangular. In real situation, this is far from being true, and to reach required Field 
Integral (FI) within available space and with sufficient margin for stable work, magnetic 
field strength in the coil in some cases must be as high as ~8.5 T. With this field level, 
stress developed in the system leads to deformation that can result in coil boundary 
separation and subsequent coil quenching. Traditional method of solving this problem is 
applying to the problem some of known techniques of stress management. Methods of the 
stress management must be analyzed in conjunction with the solenoid assembly 
technique before prototypes of the devices are built. A convenient mean of stress analysis 
during this development stage would be very useful to accelerate the process of material 
and geometry choice. After this choice is made, traditional means of stress analysis, like 
using ANSIS code, can be used for verification of stress management solution and 
adjustment of design features. 

Because of relatively simple geometry of the solenoids, which are axially 
symmetrical, it is possible to employ general methods of analysis based on direct solution 
of differential equations that describe mechanical behavior of the system. In spite of its 
axial symmetry, in the radial direction structure of the solenoids can be quite complex 
and usually includes beam pipe, bobbin, epoxy-impregnated coil (maybe several layers, 
separated by additional “protection” shells), a collar, and a steel yoke. Besides, during 
winding stage, inevitable wire tensioning provides additional pre-stress, that must be 
taken into the account. As a result, system of equations describing the system becomes 
quite large, and difficult for direct analysis. Nevertheless, with some simplifications, this 
system of equations can be solved using MathCad environment, visualized, and analyzed. 

This note provides a description of the approach to the analysis of stress management 
solution for superconducting solenoids. Examples in this note do not reflect real design of 
any of mentioned solenoid; they rather help to illustrate certain aspects of the approach. 
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II. Basic Equations 
 

Description of mechanical behavior of any solid media is based on equations of 
equilibrium and elasticity. Equilibrium condition in a cylindrical system with volume 
force of any nature can be written as: 

)()( rrFr
dr
d

tn −= σσ ,   /1/ 

where σn is normal stress, σt is tangential stress, and F(r) is an external force applied to a 
unit of volume (e.g. 1.0 m3) of the material.  

Elasticity equations describe deformation of material subject to normal and tangential 
stress: 
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where µ is Poisson’s ratio. 
Combining /1/ and /2/, general equation of deformation can be obtained: 
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General solution of the homogeneous part of this differential equation (volumetric 

force is zero) is well known [1]: 
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CrCuh
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where C1 and C2 are constants that can be found by analyzing boundary conditions. 
To find a particular solution of the non-homogeneous equation /3/, we need to know 

what the volumetric force F(r) looks like. In the case of magnetic force, 
)()( rBjrF

rrr
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where j (A/m2) is current density in the coil winding. 
Radial profile of magnetic field inside the body of the coil in solenoids is close to 

linear, and in the median plane only z-component exists, so we will approximate it using 
the next form: 
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where α = Ri/Ro is the ratio of inner and outer radii Ri and Ro, and β = Bo/Bi is a ratio of 
magnetic field levels on the outside and inside border of a particular layer. As it is easy to 
check, B(Ri) = Bi, and B(Ro) = β Bi. 

Value of Bi must be found for each layer by solving corresponding magnetostatic 
problem analytically (e.g. see [2]) or by using an appropriate solver. In our case, it is 
convenient to represent this value of magnetic field on the inside border of layer “n” by 
writing: 

IKB nni ⋅=, ,     /7/ 
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where I is wire current. This current is usually kept constant even if wire diameter is 
different for different layers. 

Introducing wire cross-section area Sw and coil compaction factor k =Sw/Sc, we can 
write down expression for the volumetric force (for each current-carrying layer): 
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Then, now non-homogeneous equation /3/ looks like  
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Partial solution of equation /9/ can be found as: 
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Then the general solution of this equation is: 
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So, for each layer of the solenoid (with or without current), equation /11/ gives an 
analytical solution for deformation. All the coefficients in equations /9/ ÷ /11/ are unique 
for each layer. C01 and C02 become known when coil dimensions are postulated; C1 and 
C2 must be found for each layer by applying corresponding boundary conditions, which 
usually means knowing stress or stress relationship on boundaries. 

Knowing u, normal and tangential (hoop) stress can be derived from /2/: 
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By combining /11/, /12/, and /13/, we get quite general analytical expressions for 
normal and tangential stress in any layer of the solenoid: 

⎥
⎦

⎤
⎢
⎣

⎡
+⋅⋅++⋅⋅−−⋅−+⋅

−
= )3(

8
0)2(

3
0)1(2)1(1

1
)( 221

22 µµµµ
µ

σ r
R

CrC
r
CCEr

o
n      /14/ 

⎥
⎦

⎤
⎢
⎣

⎡
+⋅⋅++⋅⋅−−⋅++⋅

−
= )31(

8
0)21(

3
0)1(2)1(1

1
)( 221

22 µµµµ
µ

σ r
R

CrC
r
CCEr

o
t     /15/ 

 
Now we can use /14 and /15/ to find unknown C1 and C2 for each layer “n” by 

solving a system of algebraic equations that define boundary conditions. This system is 
made by combining continuity equations for normal stress at the boundaries between 
layers “m” and “m+1”: 

nmnm _1_ += σσ     /16/ 
and interference equations at the same boundaries: 
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δ=− +1mm uu       /17/ 
Here δ has sense of a gap between the two layers, s

 /18/ 
For any number 

find

One important practical aspect is that while assembling a multilayer solenoid, overlap 
can

 to 

efore adding the layer #2. For the layer #1 it 
is th

/19/ 
 After the two layers are assemb

 /20/ 
and  

R1o_1 = R1o_0 + u1(R1o).   /21/ 
Combining the last two equations, 

em of equations /14/ - /17/, we can find  
 /22/ 

R2o_1 becomes a reference radius e een t  layer nd 

 (#1+#2) 

R3i_0 = R2o_1 + δ23.    /23/ 
Here overlap δ23 is measured rel the ou er boundary of the 

lay
: 

Now we have th ing de ormat  
eac  

. 
When the system of equat n each layers, 

inc erlap 

o_2 = R3o_0 + u3(R3o)    /25/ 

o for overlapping layers it must be 
negative: δ < 0. In other words, expression /17/ means that after assembly, the inner 
radius of the outer layer is equal to the outer radius of the inner layer:  

Rm+1 + um+1 = Rm + um  or   Rm+1 = Rm + δ.   
of layers, we have sufficient amount of algebraic equations to 

 coefficients C1 and C2 for each layer. 
 

 only be measured relatively to already assembled sub-structure. So, no readily 
available information exists about the “free state” overlap and means must be found
obtain this information. This evaluation will be a multi-step process repeated as many 
times as the number of layers is. Deformation u for any layer is defined relative to the 
“free” or undisturbed position if the layer, which often can not be measured directly.  

An algorithm to find the “free state” overlap is described below.  
Step 1: Adding layer #2 to the layer #1 
R1o_0 is the outer radius of the layer #1 b
e same as the “free state” position. Initial inner radius of the layer #2  

R2i_0 = R1o_0 + δ12.   
led, R2i_1 = R1o_1. At this step, 

R2i_1 = R2i_0 + u2(R2i) = R1o_0 + δ12 + u2(R2i)  

we come to what /17/ requires at the boundary 
between the two layers.  

After solving the syst
R2o_1 = R2o_0 + u2(R2o).  
for determining the overlap b tw he s #2 a

#3. In the case of wound layers (see below), knowing u2(R2o) allows recalculation of a 
“free state” position of the layer’s boundary. 

Step 2: Adding layer #3 to the assembly
Initial inner radius of the layer 3 

atively to the position of t
er #2 after it is added to #1. For stress evaluation, one need to know a “free state” 

overlap, that is the overlap between the undisturbed matching boundaries of the layers
δ23_free = R3i_0 - R2o_0 = δ23 + u2(R2o)   /24/ 
ree layers with two unknown coefficients defin f ion in

h of them. So, we need six equations to find a solution. Four equations will be made
by defining normal stress at the boundaries (equations /16/), and two equations /17/ will 
state that boundaries of the interfering layers are fused together:  

R2i_2 = R1o_2 and R3i_2 = R2o_2
ions is solved we know deformations i

luding the last one. This allows to find a reference radius for determining the ov
between the layers #3 and #4: 

R3
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The procedure can be re n ber of layers is. 

lthough mathematically we can find a solution, it can be too vague if we do not 
exa  are 

e’ll 

posite 

III. Composite materials in solenoid

peated as many times as the um
 
A
ctly know property of all materials we are using to build a solenoid. Some of them

composite materials with anisotropic properties depending on a technique used for 
solenoid assembly, so it is necessary be very careful in using available data. Here w
try to make preliminary estimate of what these properties can look like, but only proper 
prototyping can give us correct numbers. This is also true for thermal contraction 
coefficients of all materials. This kind of data is scarce and often unreliable for com
materials, so our own judgment is needed. Once material properties are known, one can 
use the model developed above to make several iterations approaching a solution by 
changing materials and geometrical parameters of a solenoid. 
 

 

Some areas of the assembled solenoid have anisotropic properties that depend on 
fab me 

will be evaluated based on 
kno

mpact of what properties to expect. We will start 
wit

 

rication technique. These areas are a coil, which is wound using NbTi wire with so
tension and after winding is impregnated with epoxy, and a separation/protection layer 
that is wound using fiberglass tape above the coil and also impregnated with epoxy. In 
both cases, wound layers of the coil are under tension and cured epoxy is not stressed. 
During cooling down or when pre-stress is applied, both wound base and cured epoxy 
work simultaneously to form a unified composite object. 

In this part, relevant properties of composite structure 
wn properties of used materials. 
How the coil is wound has a big i
h a regular layered winding pattern shown in Figure 1 below. 

 
Figure 1: Structure of wound and impregnated coil. Pattern 1 

Here, to create a base for winding each next layer, a relatively thick film must be used 
for

 

 layer separation. This structure suggests different mechanical properties along wire 
and across the layers of winding. 

Along the length of wire (tangential direction) all parts of the coil cross section are 
acti

 
ng in parallel, so effective elongation modulus of the structure in this direction is 

defined by relative area of NbTi wire and insulating material. If (for simplification) to
accept that the three insulating materials used in the assembly have similar mechanical 
properties (that of cured epoxy), effective elongation modulus can be found as 
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Using Ew = 100 GPa, Eins = 15 GPa, and taking wire and insulation dimensions from 
Figure 1, we get effective elongation modulus in GPa: 
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Here Dbare and Dins are diameters of bare and insulated strand. Compaction factor of this 
coil is 0.57, so epoxy filling adds about 10% to what winding without filling would show 
when stretched. Presence of epoxy is crucially important when coil is under compression: 
epoxy filling and bonding insures that the structure behaves like a solid body. 
 

Across the layers of winding (in normal direction) there is more complicated 
combination of interaction patterns. The ratio of the component cross-sections changes 
continuously in the normal direction (coordinate h). We will evaluate properties of this 
composite by analyzing serial connection of many thin layers with cross section shared 
by wire and insulation (see Figure 2). In each layer, effective elongation modulus, as 
before, is defined by relative area of the two components of the structure that act in 
parallel (simplification again), so this effective modulus varies in the normal direction. 

 
Figure 2: Illustration to evaluation of mechanical properties of coil structure in transverse 
direction 
 

Taking into the account /26/, and all variable designations from Figure 2, we can 
write down: 
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and  
inseff EhE =)(                                                                                 if h > R /28-b/ 

 
Global elasticity modulus can be found by taking integral: 
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Evaluation using known properties of wire and epoxy with t = 46 µm and d = 100 µm 
gives   EeΣ ≈ 39 GPa. 

Another mode of coil winding is possible when thin and flexible insulation is used 
between the layers of winding that can not prevent wires from finding there position in 
notches between wires of the previously wound layer (see Figure 3). The only function of 
this insulation is to provide additional protection against shorts in the coil during cooling 
down:  

 
Figure 3: Structure of wound and impregnated coil. Pattern 2 
 

This way higher density of winding can be obtained, that results in higher average 
elasticity modulus. This modulus can be evaluated as it was done for the pattern 1, but 
instead of using “t+d/2” in Figure 2 and integral expression, one must use “d” (see Fig. 
4), that can be found geometrically and depends on the insulation thickness, which is 
shown as being 50 µm in Figure 3. With this insulation thickness, d = 14.3 µm if the rest 
of the parameters correspond to what was used for the previous case of “Pattern 1 
winding”. 

 
Figure 4: Pattern 2 cell used for average elasticity modulus evaluation. 
 
Calculations using /28/ and /29/ give in this case elasticity modulus in transverse 
direction of ~58 GPa. 
In the azimuthal direction, along wires, one must apply /26/ to find in GPa: 
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Compaction factor in this case is ~ 0.68. 
Results of this analysis can be compared with test results in [3] on epoxy impregnated 

coils made of Nb3Sn and NbTi using wire with rectangular cross-section. Elongation 
module was measured in the range 66 – 75 GPa. Other work of the same authors from 
NHMFL, [4], also provides some data related to mechanical behavior of wound coils. 
With packing factor of 0.8 (compare with 0.56 and 0.68 in our case), average modulus for 
coil stretching was ~ 95 GPa. For coil compression in radial direction, average modulus 
was only ~ 50 GPa.  
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Results of this simple analysis and existing data show that attention must be paid to 
how coil is fabricated.  

Another note: If winding with glass tape and subsequent impregnation with epoxy is 
used above the coil, similar considerations can be used to find properties of the 
compound material. Reliable glass tape (strand) strength and density information is 
needed to make this work having sense. As a first approach, G-10 in the ward direction 
data can be used. 
 

IV. Effects of cooling down  
 

At room temperature, dimensions of all parts in the solenoid can be well controlled 
before they are added to the assembly. After several concentric parts are assembled 
together with some overlap, one does not have immediate control on the dimension of 
parts because of deformation (although dimensions still can be calculated).  

We will assume that the outer surface of each part is machined after it is added to the 
assembly; so that the “as assembled” outer diameter is known every time. Then the 
required inner radius of the next part can be found using /18/ if the overlap δ between the 
two layers is postulated. 

The equations /16 and /17/, that model the assembly and are described above, are based 
on the differential equation for deformation /3/. As a result, there is no need to calculate 
exact values of radii; slight change of the radius of each boundary adds a correction to the 
result proportional to u/R. The value of overlap δ is important though because it defines 
the initial deformation. So, the goal is to find new values of overlap for each couple of 
layer after cooling down.  

One of ways of doing it is to use results of the stress analysis at room temperature that 
provides us with knowledge of the “free” dimensions of each layer after we find 
corresponding values of deformation. Knowing the “free” or undisturbed positions, we 
can apply to them the known thermal contraction properties to find undisturbed 
dimensions at 4 K. It is straightforward then to find overlap at each boundary and proceed 
to solving the system of equations /14/ - /17/ with (maybe) modified structural properties 
of used materials. 

Another way is to reevaluate overlap information based on the “free” overlap data 
known from the room temperature case. For the interference between the layers m and n, 
one can write, similar to /17/: 
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K
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where χm and χn are integrated contraction coefficients of the layers in the temperature 
range from 300 K to 4 K, Rmo is the outer radius of the inner part, and indexes “mo” and 
“ni” refer to the matching outer and inner radii of the layers m and n.  

So, again, the only thing that is needed here is data of “free” overlap at room 
temperature that can be found as was described above. 

   After we know overlap data, the system of equations /14/ - /17/ must be solved only 
once to give all the information we need.   
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V. Effect of wire tensioning during winding. 
 

Wire tensioning is imminent during winding. Question arises on what impact this 
tensioning has on the solenoid mechanical behavior and whether this tensioning can be 
useful while solving the stress management problem. 

Let’s consider a layer of wire wound with tension force F above the bobbin or 
previously wound layer. We can treat this winding process as adding a solid cylindrical 
layer to the existing structure with the overlap δ at room temperature that corresponds to 
the tension force: 

ww SE
Fr
⋅

⋅−=δ ,     /32/ 

Where Ew  is Young’s modulus and Sw is cross-section area of the strand (wire). 
Each next layer will have different interference because of different radius R and 

(maybe) tension force F. For each wound layer, the same basic equation /3/ will work 
with similar set of boundary conditions. Material properties must be used carefully while 
solving these equations. At this stage, liquid epoxy or no epoxy is used, so only wire and 
interlayer insulation must be taken into the account while evaluating structural properties 
of wound layers. After epoxy is cured, new values of material properties and modified 
thermal contraction coefficient (see below) must be used to analyze stress after cooling 
down. The approach to stress calculation at room temperature developed in the previous 
chapters is fully applicable because at each winding step we know the outer radius of the 
last wound layer and the inner radius of the next layer.  

During cooling down, because thermal properties of the layers of winding are 
identical, overlap will change only because of deformation change due to stress 
redistribution, so again the same algorithm can be used. 

 
VI. Mechanical behavior of wound and epoxy impregnated coil 

 
Thermal contraction of coil structure is the issue to pay attention to. If coil’s wire is 

wound with tension and then impregnated with epoxy and cured, at room temperature 
cured epoxy is unstressed while the coil wire is stretched. So, new “equilibrium” inner 
radius at room temperature must be found that corresponds to the case when this layer of 
coil assembly is removed from a bobbin (or previous layer) it was assemble on. Knowing 
this radius allows one to find interference needed to calculate displacements and stress.  

Average properties of the material can be found in a way similar to what was used in 
the chapter 3 above, so for each material we will use averaged value of elasticity 
modulus. 

After winding a layer of wire with tension F, increase of radius is defined by /32/: 
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F

SE
F

r
r
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When wound and cured layer is removed from the bobbin, it contracts releasing the 
tension until force equilibrium is reached between compressed epoxy filling and stretched 
wire. New equilibrium position can be found from equation: 
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Here ∆req shows increase of inner radius of the wound coil with cured epoxy after it is 
removed from the bobbin it was wound on relative to that without epoxy; Sins is insulation 
cross-section per one turn f the winding. From /33/: 
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At this position, remaining inner stretching force per wire is 
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and adjusted overlap 
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Mechanical behavior of the composite structure, namely displacement relative the 

new equilibrium position, can be derived based on the known properties of the 
components making the structure and the new equilibrium position. If displacement 
relative to this position is x, corresponding force can be calculated as: 
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Using /31/, we can simplify this expression to write: 
insinsWWeff SESEES +=Σ     /38/ 

that one could expect just looking at /36/. 
 

VII. Thermal contraction of epoxy impregnated structures  
 

For superconducting solenoids, it is also important to know thermal contraction 
properties of composite materials to calculate overlap at 4K. We can make an estimate 
using the approach similar to what was used above.  

During cooling down, due to different coefficients of contraction of coil wire and 
epoxy, one can expect redistribution of internal stress and change of the equilibrium 
position of inner and outer radii. 

At room temperature, inner radius of the coil in “free” condition is defined by the 
radius of the bobbin rb, overlap δ, which is a function of wire tension (rw = rb + δ), and 
the stretching force of compressed filling material (epoxy) with the inner radius of rb 
(which is the outer radius of the bobbin). 

After cooling down, “free state” dimensions of the winding and of the epoxy filling 
change: 

)1)(()1(4
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K
w rrr χδχ −+=−=     /39/ 

and 
)1(4

epob
K

epo rr χ−= ,    /40/ 
New equilibrium position of the inner radius is common both for winding and for epoxy 
filling. Also internal force must be compensated, so 
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where N is the internal force of interaction between wire and epoxy filling.  
Using /39/, /40/, and /41/, and taking into the account /32/, we get the next expression 

for the new equilibrium radius at 4 K: 
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The second term in the parentheses above is the effective integrated thermal contraction 
coefficient of a composite material. As before, Sins includes not only epoxy, but also 
interlayer insulation. Young’s modulus EW of the strand must be taken for the 
longitudinal direction because we deal here with layer elongation that translates into 
corresponding radius change. 
Using typical data one can get: 

SwEw ≈ 50·103 N, χw = 1.9 * 10-3

SinsEins ≈ 6·103 N, χins = 4.3 * 10-3

SwEwχw + SinsEinsχins ≈ 120 N, 
which is comparable with the tension force usually used during winding. So, wire tension 
can modify material shrinkage in the case when epoxy is used as a filler material.  

For sure, coil winding pattern (compaction factor) will modify numbers shown above. 
Taking into the account compaction factor, expression for the effective shrinkage 
coefficient can be written in the form: 

w
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For k = 0.63, with F ≈ 50 N, effective shrinkage  χeff ≈ 3.5·10-3. With F ≈ 0, effective 
shrinkage χeff ≈ 2.6·10-3

If the coil spool is made of stainless steel (χ ≈ 3·10-3), it would be a good idea to 
apply some tension to wire not to lose stress during cooling down. 

 
VIII. Conclusion  

 
This note forms a base for stress analysis of superconducting solenoids:  
1. Basic equations were derived to analyze stress and deformations; 
2. Expressions were found to estimate mechanical properties of composite materials 

like wound and epoxy impregnated Nb-Ti coil;  
3. Algorithm of stress analysis at LHe temperature was suggested; 
4. Method of stress analysis when wire tension is used during winding was 

suggested 
5. Thermal shrinkage of epoxy impregnated coil was analyzed to show that it 

depends on coils winding patterns. 

 11



TD-05-039  September 20, 2005 

 
This set of algorithms will be applied and derived expressions will be used to make a 

choice of materials and assembly techniques of superconducting focusing coils in the PD 
front end.  
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